

GLOBAL FIBER OPTICS

2015 Catalogue

Table of Contents						
Торіс	Page #					
I. HIGH DENSITY RIBBON PRODUCT	1					
LC CASSETTES and SC CASSETTES	2					
a. LC 24 Fiber Cassette	2					
b. SC 12 Fiber Cassette						
c. Double Cassette Enclosure	4					
d. Rack Mount Enclosure						
FDC-CMH-072	5					
HIGH DENSITY MTP 96 FIBER PLATE	6					
MTP to LC BREAKOUT TRUNK CABLE	7					
MTP to SC BREAKOUT TRUNK CABLE	7					
MTP-MTP CABLE ASSEMBLIES	8					
MTP to MTP LASER LINK CABLE ASSEMBLIES	9					
II. FIBER OPTIC CABLE ASSEMBLIES	10					
TRUNK CABLES						
a. Singlemode Cables	11					
b. Multimode Cables	11					

III. ENG	INEERING SERVICES	
	a. Fiber Optic Cable Stripper	
	b. Fiber Optic Cable Cutter	14
	c. Engineering Service	15
	d. Maintenance Contracts	15
CABLE	EASSEMBLY	16
	a. Simplex Multimode and Singlemode 3mm jacket	
	b. Duplex Multimode 3mm jacket	
	c. Duplex Singlemode 3mm jacket	
CABL	E ASSEMBLY LEGENDS	
	a. Number of Fibers	
	b. Connector on each end	
	c. Fiber Type	
	d. Core/Cladding Size	19
	e. Cable	19
	f. Flame rating	
	g. Termination Type	
	h. Fiber Accessories	
	i. Breakout Length	21
	j. Connector Manufacturer	

CABLE CONNECTOR AND SPECIFICATION	
IV. OPTICAL RETURN LOSS AND INSERTION LOSS	
OPTICAL RETURN LOSS AND INSERTION LOSS	23
INTERFEROMETRY MEASUREMENTS	
V. FIBER OPTIC TRAINING	
Course 1: FUNDAMENTALS OF FIBER OPTICS	27
Optical Theory and Fiber's Optical Theory	
a. Optical Theory	27
b. Optical Fibers	
Optical Components	
a. Optical Transmitters	
b. Optical Detectors	
c. Optical Connectors and Splices	
Testing and Instrumentation	
Practical Considerations	
Optical Networks	
Additional Hands-On Training	
Course 2: FIBER OPTIC TESTING	

Opt	ical Theory	
Opt	ical Transmitters	
Opt	ical Receivers	
Tes	ting and Instrumentation	
а	. End to End Testing	
b	o. OTDR Testing	
Pra	ctical Considerations	
SCHEI		
FIBER OPTIC TRAINING VIDEOS		
TECHNO	DLOGY SERIES:	Appendix A
i.	Lasers as a Tool	
ii.	Introduction to Fiber Optic Theory/Fiber Structure	
iii.	Cable/Cable Preparation	
iv.	Connectors, Connectorization/Patch Panels	
v.	Fiber Optic Testing, Troubleshooting & Documentation	
vi.	Applications	
vii.	Fiber Optic LED's, Lasers and Detectors	
viii.	Couplers, Switches and Isolators	

х.	Safety
xi.	Plastic Optical Fiber
xii.	Dense Wavelength Division Multiplexing
xiii.	System Design
xiv.	History of Fiber Optics
XV.	Fiber Optic Splicing and Splice Enclosures
ноw-то	-SERIES:
i.	How To Perform Optical Loss Testing
ii.	Understanding and Using the OTDR
iii	How To Prepare Fiber Optic

Installation

ix.

iii.	How To Prepare Fiber Optic
	Cables

- How To Cleave, Polish and iv. Inspect a Fiber Optic Connector
- How To Perform a Fiber v. Acceptance Test
- Singlemode Fiber Optics vi. Emergency Restoration
- How To Perform an Optical vii. Loss Budget
- How To Cleave and Splice viii. **Optical Fibers**

.....Appendix B

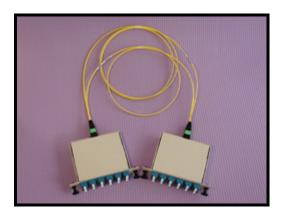
- ix. How to Prepare a Fiber Optic Patch Panel
- x. How To Clean Fiber Optic Connectors

I HIGH DENSITY RIBBON PRODUCTS

Global Fiber Optics Catalogue

High Density Cassettes

The LC 24 Fiber and SC 12 Fiber Cassettes are a compact, high-density fiber optic solution to conserve bay and enclosure space. These cassettes eliminate the need for highly trained fiber optic termination crews and equipment.

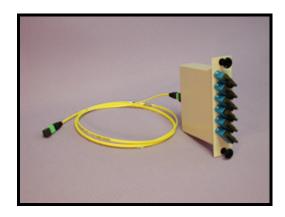

LC 24 Fiber Cassettes

The LC Cassette Module is a compact, high-density fiber optic solution to conserve bay and enclosure space. The LC to MTP connector transition is protected in a metal case that gives good fiber protection and an aesthetically pleasing appearance. The cassette can also be easily swapped during a maintenance cycle.

The LC connector is half the size of the SC connector, which is significant when space is an issue.

The **MTP** is a multi-fiber optic connector, which accepts a 12-fiber ribbon cable. The MTP ferrule is most commonly angled for SM applications and flat for MM applications. The angled **MTP connector** gives a back reflection of -60dB or more. The **MTP connector** is either male or female. The male has two alignment pins protruding from the end of the ferrule.

The **cassette** is a metal case measuring 11.5cm x 9.5cm x 3cm. (4.5in. x 3.75in. x 1.25in.). The cable assemblies are manufactured using 12-fiber ribbon cable, a flat cable resembling a ribbon, where the 12 fibers are situated side by side.

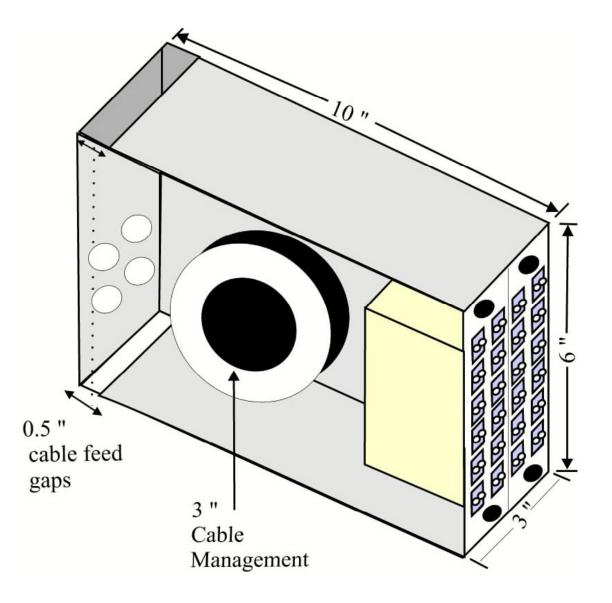

LC Cassette Layout with Trunk Cable

The cassettes fit into a Siecor 12 port panel rack mount enclosure with Part Number **FDC-CMH-072**. This application would hold a capacity of 288 fibers. The cassettes can be adapted to fit into enclosures other than the one previously mentioned.

SC 12 Fiber Cassette

The SC 12 Fiber Cassette is a compact, high-density fiber optic solution to conserve bay and enclosure space. The SC to MTP connector transition is protected in a metal case that gives good fiber protection and an aesthetically pleasing appearance. The cassette can also be easily swapped during a maintenance cycle. The SC connector is also a space saver because of its push/pull mating.

The cassette contains 1 - 12 fiber SC to MTP SM cable assembly, 6 duplex SM SC adapters and 1 MTP adapter. Therefore, 12 connections can be made. The cassette is a metal case measuring 11.5cm x 9.5cm x 3cm. (4.5in. x 3.75in. x 1.25in.) The distance between the mid point of holes for the grommets and plungers is 13.7cm (5 3/8in.). The dimensions for the SC port plate are 3.5cm x15cm (1 3/8in.x 6in.)

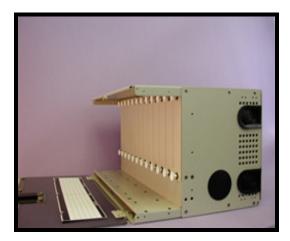


SC-MTP 12 Fiber Cassette with Ribbon Cable

The cassette fits into a Siecor 12 port wall mount enclosure with Part Number **FDC-CMH-072**. The port plate of the cassette could be adapted to fit into enclosures other than the previously mentioned Rack Mount Enclosure.

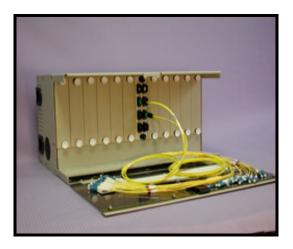
Double Cassette Enclosure

The double cassette is a compact, high-density fiber optic solution to conserve bay and enclosure space. The double cassette can be equipped with two LC 24-fiber cassettes or two SC 12-fiber cassettes. The cassettes are inserted in a metal case that gives good fiber protection and an aesthetically pleasing appearance. The cassettes can also be easily swapped during a maintenance cycle. The high-density double cassette is a metal enclosure measuring 25.4cm x 7.6cm x 15.2cm (10in. x 3in. x 6in.).


Rack Mount Enclosure FDC-CMH-072

The **Fiber Distribution Center** is a **Rack Mount Enclosure** single cabinet designed to house fiber optic connectors and splices. The dimensions are $17" \times 11" \times 9"$. The unit accommodates 12 connector panels or modules. The dimensions of the port plates that the enclosure will accommodate are 3.5cm x 15cm (1 3/8" x 6") with a midpoint of 13.8cm between the plunger/grommet holes. The **FDC** is typically part of a system that is a fiber optic cross-connection between outside plant cables and opto-electronic equipment in a central office, computer room, or remote terminal equipment location. This unit fits into 19 or 23-inch equipment racks.

- *i.* Open design for easier connector access
- *ii.* Flip card for record keeping
- *iii.* Cable entry grommets
- iv. Larger routing guides for better cable management
- v. Smoke-tinted front door
- vi. Can be wall-mounted with brackets ordered separately
- vii. Removable hinged front and rear doors

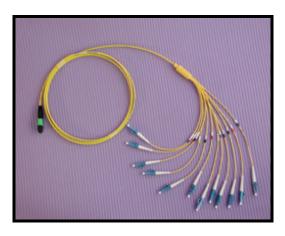

Rack Mount Enclosure Front View

Rack Mount Enclosure Side View

High Density MTP 96 Fiber Plate

Global Fiber Optics Corp. has designed a **High Density MTP Fiber Plate** that has a capacity of 96 fibers in a 6" x 1 3/8" (15 cm. X 3.5 cm.) area. The plate has eight 12-fiber MTP ribbon cable ports. MTP 12 fiber trunk cables connect to the inner side of the plate inside the enclosure. A 12 Fiber MTP Fan-out Cable connects to the outer side of the plate. The graphics below show two MTP-LC 12-fiber Singlemode cable assemblies connected to the high-density MTP plate fan-out.

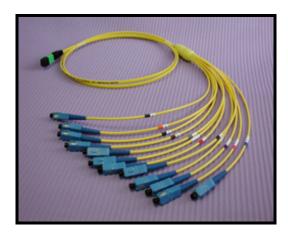
High Density 8 Port MTP Layout



High Density MTP Fiber Plate

TRUNK RIBBON CABLES

MTP-LC 12 Fiber Ribbon Trunk Cable


Connects from High Density MTP 96 Fiber Plate LC Female Adapters.

12 Fiber Singlemode MTP-LC Breakout 1.6mm Jacket

MTP-SC 12 Fiber Ribbon Trunk Cable

Connects from High Density MTP 96 Fiber Plate SC Female Adapters.

12 Fiber Singlemode MTP-SC Breakout 3.0mm Jacket

MTP Fiber Optic Cable Assembly

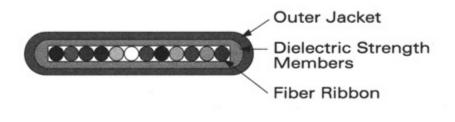

The **MTP** to **MTP fiber optic cable assembly** is a multi-fiber alternative to the traditional 12-fiber distribution and breakout cables. The **MTP** is a connector manufactured specifically for a multi-fiber ribbon cable. The Singlemode fiber optic connectors have an angled ferrule allowing for minimal back reflection while the multimode connector ferrule is commonly flat. The **ribbon cable** is flat and appropriately named due to its flat ribbon like structure which houses 12 fibers side by side in a jacket 3/16 of an inch or 5mm wide.

Fig. A) MTP Angled Connector and 12 Fiber Ribbon Cable (no jacket)

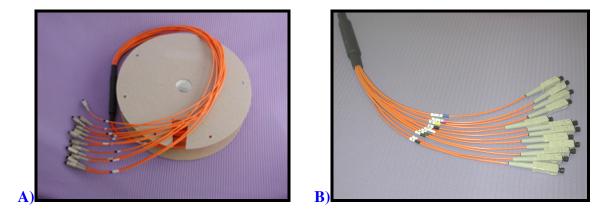
Fig. B) MTP Angled Connector and 12 Fiber Optic Ribbon Cable

12 Fiber Ribbon Cable (Cross section)

It is a **cost effective** alternative to a 12-fiber distribution or breakout cable.

- i. There is a **reduced cost** in connectors as one **MTP connector** replaces 12 standard connectors.
- ii. **Saves labour time** because you mate 12 fibers of the MTP at the same time.
- iii. The **12-fiber MTP-MTP Ribbon Cable Assemblies** are an effective way of saving conduit space due to their flat ribbon-like structure allowing for a higher density of cables to occupy a particular conduit in installation.

MTP to MTP LASER LINK CABLE ASSEMBLIES


These 48 or 72 fiber trunks use a high performance 10gig laser link fiber used in 10gig Ethernet networks. This 10gigabit laser link high performance micro core cable is more robust than the stacked ribbon cable. The micro core design allows the cable to bend in all directions. The laser link cable has a larger bandwidth at 10GHz as apposed to the giga link stacked ribbon cable, which can achieve a bandwidth up to 800MHz.

For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

II FIBER OPTIC CABLE ASSEMBLIES

FIBER OPTIC TRUNK CABLES

Global Fiber Optics Corp. will manufacture **Multimode** or **Singlemode Fiber Optic Trunk Cables** in 6, 12 and 24 fibers. We will customize the length of the breakout for your application. We can also stagger the lengths of the individual fibers for a tidy layout.

12 Fiber SC MM Distribution Cable with 1 meter Breakout Fig. A) broken out with 3.0 mm furcation tubing Fig B) broken out with 2.0 mm furcation tubing *also available in 900um breakout and in various breakout lengths

12 Fiber SC SM Distribution Cable with 1 meter Breakout

*also available in 900um & 2.00 mm breakout and in various breakout lengths

III ENGINEERING SERVICES

FIBER OPTIC CABLE STRIPPER

The 7045 programmable fiber optic cable stripper is designed for processing jacketed fiber optic cables. It provides precise stripping of the outer jacket, Kevlar sleeve, secondary and primary coatings on all common single and multi-mode cables. The machine is capable of a maximum stripping length of 75 mm and a maximum diameter of 4.5 mm. The high level of precision of all the components and the microprocessor control system ensure that the processed cables can be reproduced to perfection.

Technical Specifications:

Stripping throughput	Approx. 120-360 pieces/hour (depending on cable type and program parameters)
Max. cable diameter	4.5mm (0.18")
Max. stripping length	75 mm (2.95")
Max. stripping levels	9

FIBER OPTIC CABLE CUTTER

The OC 3950 is a quick and precise machine used for measuring and cutting round cable, tubing and flat ribbon cable. The automatic cutter can be configured with different blade materials (ex. tool steel for cutting copper wire or carbide for cutting fiber optic cable w/Kevlar).

Special Features:

- Measures and cuts wire up to 4 AWG, round material up to .59" (15 mm) O.D. and flat material up to 3.94" (100 mm) wide
- Cuts multi-conductor, fiber optic and coaxial cable
- Rapid production capability

Technical Specifications:

Production Rate	6,540 pcs./hour for 4.00" (100 mm) long 2,800 pcs./hour for 40.00" (1000 mm) long
Max. Diameter	0.59" (15 mm)
Max. Width	3.94" (100 mm)
Max Wire Size	4 AWG stranded copper

Engineering Service

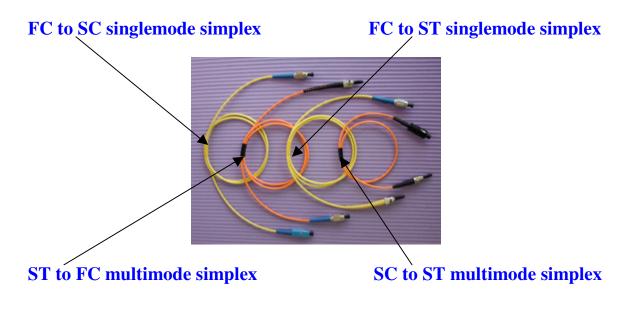
Global Fiber Optics Corp. introduces to the market an extensive variety of fiber optic engineering services in niche areas of competence. Services include project design, product design, site surveys, network design, splicing, termination and testing services, troubleshooting and emergency restoration, as well as building draft services. Global Fiber Optics Corp. also provides custom design of the following specialized fiber optic cable components: Cable Assemblies

Fiber Optic Enclosures High Density Cassettes Mil-38999 Cable Assemblies Fiber Optic Ribbon Cable Assemblies Large Core Fiber Optic Assemblies

Maintenance Contracts

Global Fiber Optics Corp. can install fiber optic cables, systems and troubleshoot or service existing systems to meet your communications needs. System installation or maintenance services include fiber optic terminations, fiber optic enclosures, fiber optic splice trays, OTDR testing, dB Loss testing and fiber optic fusion splicing. We also do installation of breakout kits and pull socks on cables supplied by the customer or Global Fiber Optics.

Enclosure Installation/Service – Wall & Rack Mount Splice Tray Installation/Service – Universal, Fusion Testing – OTDR, Attenuation, dB loss end to end Fusion Splicing – single-mode and multimode FMS Module Installation/Service – left and right hand fiber management system modules Terminations – Biconic, ESCON, FC, FC/APC, FDDI, LC, MPO, MT-RJ, ST, SC, SC/APC


> For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

Cable Assemblies

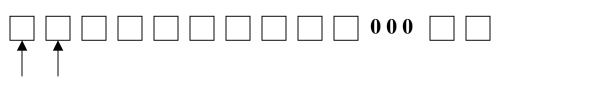
Global Fiber Optics Corp. specializes in **custom patch cords, jumpers** and **cable assemblies**. If you have a project that requires a special patch cord, then we will propose a solution to suit your needs.

- *i.* Multimode and Singlemode cable assemblies with differing core sizes 9/125um, 50/125um, 62.5/125um, 100/140um, 200/230um, 940/1000um
- *ii.* Multimode and Singlemode connectors -D4, FC, FC/APC, FDDI, LC, Mini BNC, MTP, MT-RJ, SC, SC/APC, SMA, ST, MU, BICONIC, MPO, ESCON
- *iii.* Multimode and Singlemode cable -900um, Simplex and Duplex 1.6mm and 3mm jackets, Breakout, Distribution, Loose Tube, Ribbon

Multimode and Singlemode Patch Cords (3mm jacket)

Multimode Duplex Patch Cord

SC-SC Multimode Duplex Patch Cord


Singlemode Duplex Patch Cord

FC to ST Singlemode Duplex Patch Cord

Cable Assembly Legend

The following cable assembly legend is for your convenience while you are ordering fiber optic cable assemblies. The document can be printed, filled in and faxed to us with your specific needs.

Number of Fibers (2 spaces)

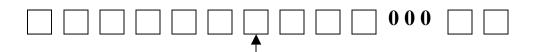
02, 04, 06, 08, 12, 24, 36, etc.

Connector on each end (2 spaces)

Α	B	C	D	E	F	G	H	Ι	J	K
FC/APC	Biconic	SC	D4	MTP	FC	SCIAPO	SC/UPC	FDDI	MTP	MT-RJ
TC/AFC	Dicollic	SC	D4	Male	гU	SCIAFC	SCIUFC	PDDI	Female	Female

L	M	Ν	0	P	Q	R	S	Т	U
IC	Mini	ESCON	UV 77	Pigtail (no	MU	MT-RJ	SMA	SТ	FC/LIPC
LC	BNC	ESCON	0 • 77	connectors)	MU	Male	905	51	FC/UFC

V	W	Х	Y	Z
CLEAVE	MPO Female	MPO Male	SC Duplex	SMA 906


Fiber Type (1 Space)

Н	Μ	S
Hybrid (SM/MM)	Multimode	Singlemode

Core/Cladding Size (1 Space)

1	2	4	5	6	8	9
100/140	200/230	940/1035	50/125	62.5/125	800/840	9/125

Cable (1 Space)

Α	B	С	D	E	F	G	H
Armored Distribution	Breakout	Simplex	Distribution	Round patch	Furcation	1.6mm jacket	Ribbon (Bare Fiber)

L	Ν	Q	R	S	X
Loose Tube	No Cable	Ribbon Round (Ruggedized)	Ribbon Flat (Ruggedized)	Shipboard	Duplex (For duplex connectors)

Z 9									
Zipcord 900u Buffered									
			0						
Flame Rating (1 Space)									
Ν		Р	R						
Non Rated	Ple	num	Riser						

Termination Type (1 Space)

Α	В	С	D	E	F	G
	Breakout	Breakout/		Breakout with		Breakout
Fusion	with 3mm	FMS	Cassette	900um	Breakout/	with 1.6mm
Splicing	Furcation	customer	Casselle	Furcation	FMS	Furcation
	Tubing	supplied		Tubing		Tubing

H	I	J	K	L	Μ
Breakout with 2mm Furcation Tubing non rated		Installation/ Breakout	Installation/900u Distribution terminations	Installation/ Fusion Splicing	FMS only

Ν	Р	Q	R	S	Т	U	V
Normal	Partial Termination of All Existing Fibers	Breakout with 1.2mm Furcation Tubing	B/O, Partial Termination of All Existing Fibers		Breakout Staggered	Ribbon Furcation Tubing	90 Degree Cleave & Normal

W	X	9
Waterproof Closure	90 degree boot/Staggered End	90 Degree Boot/Normal

Fiber Accessories (1 Space)

С	F	Н	Ι	L
Custom Labels	FIS Fusion Splice Sleeve	Heyco Gland both ends with pull sock	Innerduct	Liquid tight

Р	R	S	U	X
Pull Sock	Corning Fusion Splice Sleeve	Customer supplied liquatite	Liquid tight/pullsock	Non of the Above / No Pull Sock

Breakout Length (1 Space)

Length in Meters (m): for example 1m, 2m, etc.

Connector Manufacturer (1 Space)

Α	С	E	F	G	Ι	J	L
AMP	Corning	GC Technologies	FIS	Gandi 77 Fiber	Seiko	Johanson	FIS (Metal Ferrule Connector)

Μ	Ν	P	S	Т	V	Χ
Molex	Atlantic Vision	No Connectors	Senko	T&B	Avaya	Customer Supplied Connector

Cable Connector Specifications

Connector type	Insertion Loss (dB)	Mating Cycles	Temp. Range (degrees C)	Return Loss (dB)
D4 SM	0.3	1000	-40 to +80	50
FC SM	0.3	1000	-40 to +80	55
FC/APC	0.25	500	-30 to +70	70
FDDI MM	0.6	500	-20 to +65	-
LC MM	0.3	500	-30 to +70	-
LC SM	0.3	500	-30 to +70	55
Mini-BNC MM	0.21	500	-40 to +80	-
MTP MM	1.0			-
MTP SM	1.0			
MT-RJ MM	0.3			-
MT-RJ SM	0.3			
SC MM	0.3	500	-40 to +60	-
SC SM	0.3	500	-40 to +80	55
SC/APC	0.3	500	-30 to +70	70
SMA MM	1.5	200	-55 to +105	-
ST MM	0.3	500	-40 to +60	-
ST SM	0.3	500	-30 to +70	55

MM—Multimode SM—Singlemode

For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

IV OPTICAL RETURN LOSS and INSERTION LOSS

OPTICAL RETURN LOSS and INSERTION LOSS

Back Reflection Testing, Return Reflection and Return Loss are terms to describe the optical energy reflected back towards the source due to an air gap between two fibers. It is especially important in Singlemode systems to minimize return loss so that output power level of the source remains stable.

Global Fiber Optics Corp. can test your cable assemblies with an optical return loss meter to ensure you meet the specifications required by the end customer.

INTERFEROMETRY MEASUREMENTS

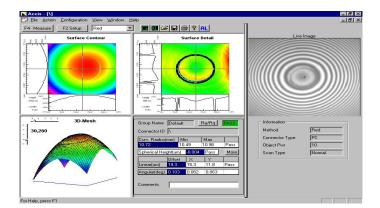
Interferometry Testing is used in the fiber optic field to measure the three key physical endface parameters of a PC polished connector. These parameters include:

- i. Radius of Curvature
- ii. Eccentricity of Polish (Apex Offset)
- iii. Fiber Undercut or Protrusion (Fiber Height)

Global Fiber Optics Corp. can provide hard copy Interferometry results.

This test can also evaluate the radius of curvature and Apex offset of unterminated connectors and multiple fiber connectors. This process helps in the screening process to eliminate **out-of-spec ferrules** before connectorization.

It is also useful in the measurement of **protruded and recessed fibers** especially in connector terminations where fibers should be protruded or recessed.


The system provides information on fiber heights and curvature on sections of **multi-***fiber connectors*.

Adhesive reliability can be checked on fibers that have been pushed back due to temperature and pressure.

A CLOSER VIEW OF THE INTERFEROMETRY MEASUREMENT

Interferometer Measuring a Singlemode Connector

The Interferometry results (Includes radius of curvature, linear offset, spherical height)

> For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

Course 1:

FUNDAMENTALS OF FIBER OPTICS TRAINING

A. Course Benefits:

Course content is adapted to incorporate hands-on fiber optic training on your specific in-house equipment supported by Fiber Optic theory to realize your specific business and technical goals. The course also incorporates a high degree of student participation to reinforce course material using group exercises.

B. Who Should Attend:

This one-day fiber optic training course is intended for persons with some prior experience in Fiber Optics.

OPTICAL THEORY AND FIBERS

Optical Theory

Tyndall's Demonstration Digital Encoding Schemes Fiber Advantages Refraction Fresnel Reflections Digital Transmission Duty Cycle Frequency/Wavelength Relationship Snell's Law Decibels Optical Fibers

Optical Fibers

Total Internal Reflection	Numerical Aperture	
Singlemode Fibers	Advantages/Disadvantages of Singlemode	
Multimode Systems	Index Profiles	
Graded Index Fibers	Advantages/Disadvantages of Multimode Systems	
Fiber Specifications	Attenuation	
Absorption	Scattering	
Loss and Bends	Dispersion	
Chromatic Dispersion	Bandwidth	
Wavelength Windows	PCS Fibers	
Optical Cabling	Buffer Types	
Minimum Bend Radius	Tensile Strength and Crush Resistance	
Fiber Contamination	Plenum Cable	

OPTICAL COMPONENTS

Optical Sources

Optical Sources	Lasers
Advantages/Disadvantages of Lasers	LED'S
Advantages/Disadvantages of LED'S	Transmitters
Transmitters Characteristics	Data Rate
Output Power	Output Spectrum
Transmitter Duty Cycle	Rise/Fall Times
Logic Types	

Optical Detectors

Avalanche Photodiodes (APD'S)			
Receivers			
Data Rate			
Bit Error Rate (BER)			
Multimode Components			
Duty Cycle			
Handling Bursty Data			
Carrier Detect			

Pin Photodiodes Receiver Specifications Peak Input or Sensitivity Sensitivity vs. BER Wavelength AC Coupling Rise/Fall Times Link Trade-offs

Optical Connectors and Splices

Connector/Splice Specifications	Popular Connector Types
Insertion Loss	Relative Insertion Loss
PC Connectors	Environmental Specifications
Materials	Termination
Singlemode Components	Multimode Components

TESTING AND INSTRUMENTATION

Common Optical Tests Attenuation Measurement OTDR Trace Sources and Power Meters Link Power Budget Power and Attenuation Optical Time Domain Reflectometers OTDR Attenuation Insertion Loss

PRACTICAL CONSIDERATIONS

Pull box Dimensions Turn Fittings Patch Panels/Enclosures Sharp Bends Exit Slots Patch Panel Layout

OPTICAL NETWORKS

Bus Topology Star Topology Ring Topology FDDI Topology

ADDITIONAL HANDS-ON TRAINING

Connector Termination OTDR Testing & Measurement Power Source and Meter Testing Fusion Splicing

NOTE:

Please note that these additions may or may not be included in the course fee depending on the equipment you have in-house.

> For more information contact us @: Phone #:905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

Course 2:

FIBER OPTIC TESTING

A. Course Benefits:

Course content is adapted to incorporate hands-on fiber optic training on your specific in-house equipment supported by Fiber Optic theory to realize your specific business and technical goals. The course also incorporates a high degree of student participation to reinforce course material using group exercises.

B. Who should attend:

This one-day fiber optic testing training course is intended for persons with some prior experience in Fiber Optics.

OPTICAL THEORY

Decibels	Attenu
Loss and Bends	Disper
Bandwidth	Wavel
Minimum Bend Radius	Tensil
Fiber Contamination	

Attenuation Dispersion Wavelength Windows Tensile Strength and Crush Resistance

OPTICAL TRANSMITTERS

Optical Sources	Lasers
Advantages/Disadvantages of	LED'S
Lasers	

OPTICAL RECEIVERS

Avalanche Photodiodes (APD'S) Receivers Pin Photodiodes

TESTING AND INSTRUMENTATION COMMON OPTICAL TESTS

End to End Loss Testing

Power and Attenuation	Equipment required on-site
Attenuation Measurement*	Sources and Power Meters
Insertion Loss*	Design Concepts
Bare Fiber Testing	-> Link Power Budget
Long Wavelength Loss Measurement*	-> Power Budget Examples/Calculations
End to End Loss Test*	-> Comparing Calculated/Actual Losses
-> Cable Substitution Loss Test*	Flashlight Test (Loopback)*
-> Cut Back Loss Test	Loopback Loss Test*
Measurement Accuracy	Bi-directional Loss measurements*
Specialized Test Cables	Fiber Optic Talk Sets
Mixed Connector Testing	Fiber Identifiers

OTDR Testing

Optical Time Domain Reflectometers	OTDR Theory & Block Diagram
OTDR Attenuation*	OTDR Receiver Saturation
OTDR Dead Zone*	OTDR Pulse Width*
OTDR Resolution Limitations	OTDR Trace Examples and Analysis
OTDR Index of Refraction Settings	-> Non Reflective Fusion Splice*
Providing hard copy OTDR results*	-> Reflective Mechanical Splice*
Visual Fault Locators	-> Reflective Connector Splice*
Fault Location*	-> Faulty Splices*
Splice Loss Error Correction	-> Fiber Launch Reflections*
-> Matched Fibers	-> Fiber End Face Reflections*
-> Unmatched Fibers	

PRACTICAL CONSIDERATIONS

Pullbox Dimensions Turn Fittings Patch Panels/Enclosures* Sharp Bends Exit Slots Patch Panel Layout

NOTES:

1. The * beside a topic indicates that hands-on exercises are a part of this topic.

2. A course binder is included as part of the training for future reference.

3. Hands-on portion of the training is done using the same equipment installers use on-site.

For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

TRAINING SCHEDULE: CANADA

Fundamentals of Fiber Optics Training Schedule (Canada) 2014

October 15, 2014 November 19, 2014 January 21, 2015

- i. Course dates are flexible.
- ii. Will only take place if a sufficient number of students are registered.

Fiber Optic Testing Training Schedule (Canada) 2014

October 16[,] 2014 November 20, 2014 January 22, 2015

> For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: crhills@global-fiber-optics.com

APPENDIX A

Fiber Optic Training Videos

(CD-ROMs are also available for each title except Lasers as a Tool)

Fiber Optic Technology Series:

Part # VIDEO	Part # CD-ROM	Title
W-4LA	N/A	Lasers as a Tool The video features all the Lasers and their applications in Fiber Optic communications, manufacturing, machining, detection, quality control as a measurement tool, medical research, entertainment and laser fusion applications.
		Length: 22 minutes
W-4LB	W-5LB	Introduction to Fiber Optic Theory/Fiber Structure This introductory video covers optical theory and its relationship to optical fibers; optical issues such as reflection, refraction and wavelength; fiber types such as Singlemode, Multimode, core, cladding and coatings.
		I. History II. Fiber Manufacturing III. Optical Theory Refraction Reflection Wavelength Attenuation Numerical Aperture IV. Fiber Types and Structures V. Dispersion

	1	M - 1 - 1
		Modal Chromatic
		VI. Cutoff Wavelength
		VII. Comparison
		VIII. Advantages
		Length: 25 minutes
W-4LC	W-5LC	Cable/Cable Preparation
		This video covers cable types, structures and related building codes and specifications along with proper techniques, tools and methods to prepare the cable for use with splicing and connectorization.
		I. Cable Manufacturing II. Cable Structures III. Indoor and Outdoor Cable Types IV. Cable Jackets and Applications V. Specialty Cables VI. Building and Installation Codes VII. Cable Preparation Loose tube Cable Breakout Cable Distribution Cable Fan Out Kits Breakout Kits
		Length: 32 minutes
W-4LD	W-5LD	Connectors, Connectorization/Patch Panels
		This video reviews connectors, vendors, bonding techniques, and system specifications involving fiber optic connectors, basics of connector design, termination, styles and applications.
		I. Connector Types
		II. Bonding Techniques
		III. End Finishes
		IV. Termination
		V. Visual Inspection
		VI. Basic Testing
		8
		VII. Jumpers and Pigtails

		VIII. Patch Panels
		Types
		Applications
		IX. Attenuators
		X. EIA/TIA 568A Issues
		Length: 32 minutes
W-4LE	W-5LE	Fiber Ontio Testing Troublesheeting &
		Fiber Optic Testing, Troubleshooting &
		Documentation
		The video covers test equipment and specific applications
		and techniques for education and enhancement of user
		skills. The video also reviews the equipments' application
		along with the various standards, procedures and
		documentation requirements.
		documentation requirements.
		Turner of Test Fauturnert
		Types of Test Equipment
		I. OTDR's
		Main Frame
		Mini
		PC
		Fault Finders
		II. Light Sources & Power Meters
		III. Talk Sets
		IV. Variable Attenuators
		V. Visual Tracers
		VI. Microscopes
		VII. Reflectometers
		VIII. The Roles of Test Equipment & Their
		Operation
		IX. Acceptance Testing
		X. Span Testing
		XI. Maintenance
		XII. Restoration
		XIII. Test Documentation
		XIV. Restoration Strategies
		XV. Restoration Kits
		XVI. Faults & Location Techniques
		Length: 37 minutes

W-4LF	W-5LF	Applications
		This video is an overview of where and how fiber optics is being used in communication systems to meet the changing requirements of voice, video and data communications.
		I. Fiber Optics Role in a Communications World
		II. New Trends in Communications
		Telecommuting
		Teleconferencing
		Video Conferencing
		Security
		Smart Homes
		III. Communications LAN's
		WAN's
		MAN's
		Voice: T-Carrier
		SONET
		Fiber to the Curb
		IV. Video
		CCTV
		Broadcast
		HDTV
		CAD
		Imaging V. Data
		V. Data LAN's
		Ethernet
		Token Ring
		IEEE 802.3
		<i>IEEE 802.5</i>
		FDDI
		ATM
		SMDS
		VI. Sensing/Sensors
		VII. Medical
		VIII. Entertainment
		Illumination Lasers
		IX. Audio
		X. Virtual Reality
		Length: 40 minutes

W-4LG	W-5LG	Fiber Optic LED's, Lasers and Detectors
		The video covers components and their operation, wavelength compatibility as well as cost issues, packaging and industry trends. New technologies are also addressed such as tunable lasers and optical amplifiers.
		I. Types II. Functions III. How They Work IV. Applications V. Operating Issues VI. Analog & Digital Issues VII. LED's Edge and Surface Emitters
		VIII. Lasers Fabrey-Perot DFB Tunable Amplifiers Classifications Safety
		IX. Detectors APD's PIN's PIN-FETS Hybrids Materials Issues
		X. Transceivers Packages Design Standards XI. Modules and Transmitters XII. System Performance Budgets
		Length: 37 minutes

W-4LH	W-5LH	Couplers, Switches and Isolators
		The fiber optic couplers, switches and isolators are covered with their applications at the present and how they may be used in the future.
		 I. Issues II. Introduction III. What Are They? IV. How Do They Work? V. Applications VI. Couplers Splitters Wavelength Division Multiplexers Bi-Directional Couplers Star Couplers VII. Switches Applications Types Loss Issues VIII. Isolators Functions Length: 25 minutes
W-4LI	W-5LI	Installation
		Every Fiber Optic Cable requires proper techniques for a successful installation. Building codes and standards, environmental issues, proper design, routing, equipment for installation, topologies, applications and reliability concerns are addressed.
		I. Indoor Cable Installation Campus Plenum /Risers Pulling of Cable Cable Trays Raceways Conduits Air Blown Fiber

		II. Outdoor Cable Installation
		Direct Buried
		Trench Installations
		Boring
		Pressurized Cable
		Vaults
		Manholes
		Handholes
		III. Aerial Installations
		OPGW
		ASDD
		Lashing
		Aerial Ducts
		Figure Eight
		IV. Special Issues
		Building Codes
		Installation Standards
		Grounding/Bonding
		Firewalls
		Cable Markings
		Slack Points
		Routing
		0
		Length: 30 minutes
W-4LJ	W-5LJ	Safety
		Fiber Optic safety issues for field and lab applications are covered in this video. Examples of good safety practices,
		standards and areas of concern are presented.
		I. Safety in the Work Area
		II. Safe Handling of Optical Fibers
		III. Safe Disposal of Optical Fibers
		IV. Laser Safety
		V. Ultraviolet Light
		VI. Chemicals and Right-To-Know Laws
		VII. Safety Standards
		VIII. Protective Clothing and Eyewear
		IX. Safety in Installations
		X. Confined Spaces
		XI. High Voltage
		XII. Safety Tools
		Length: 20 minutes

W-4LK	W-5LK	Plastic Optical Fiber
		This industry, with its higher bandwidth fibers, has grown to voice, video and data requirements from the previous application of illumination. This fiber optic video shows applications and potential applications and also how the POF works.
		I. POF Fibers II. POF Fiber Theory III. Advantages IV. Handling and Preparation V. Applications of POF Automotive Lighting Signs Communications Isolation Education VI. POF Future Trends Length: 15 minutes
W-4LM	W-5LM	Dense Wavelength Division Multiplexing
		Dense Wavelength Division Multiplexing Dense Wavelength Division Multiplexing video and CD- ROM gives a thorough explanation of this technology. Roles of the components and how they are integrated into a DWDM network will be covered. The understanding of types of fibers and their impact in designing and implementing the systems are demonstrated along with graphics of four wave mixing, dispersion characteristics, dispersion compensation and optical multiplexing and demultiplexing techniques.
		 I. History of DWDM II. The Need for DWDM III. Laser Characteristics IV. Fibers & Fiber Issues Dispersion Shifted Fibers Four Wave Mixing Non Zero Dispersion Shifted Fibers Dispersion Compensation Fibers

		 V. ITU Standards & Industry Trends VI. Multiplexing & Demultiplexing Light VII. DWDM for Long Haul Systems Oceanic & Inter Exchange Carriers VIII. DWDM for Metropolitan Area Networks CLECs, Utilities & Private Networks
		IX. The Future of DWDM
		Length: 34 minutes
W-4LN	W-5LN	System Design
		This video provides visual insights into the proper design of optical fiber communication systems for voice, video, and data communications from physical layout and calculating loss budgets for both singlemode and multimode networks.
		LOCAL AREA NETWORKS (LAN's)
		 I. Topologies II. Fiber Selection III. Connector Selection IV. Routing Issues V. Hubs, Patch Panel and Media Outlets VI. System Issues VII. System Loss Budgets VIII. Fiber Backbones IX. Fiber to the Desk
		NETWORKSI. TopologiesII. Fiber SelectionIII. Connector and Splice IssuesIV. Closures and Distribution PanelsV. Closures and Distribution PanelsV. Manholes, Handholes and VaultsVI. Route Redundancy IssuesVII. Route Redundancy IssuesVII. System Loss BudgetsVIII. Restoration Planning Through DesignIX. Fiber to the CurbX. Future FlexibilityXI. System Issues

W-4LP	W-5LP	History of Fiber Optics
W-4LS	W-5LS	Fiber Optic Splicing and Splice Enclosures
		The types of mechanical splices and fusion splicers are reviewed, how they work and their applications. The related tools, hardware and installation issues are also covered for a background in understanding and use of the splicing products.
		I. Fusion Splicers
		Manual
		LID
		PAS
		II. Fusion Splicing
		III. Maintenance & Operation Issues
		IV. Mechanical Splices
		UV
		Mechanical
		Reusable
		V. Splice Tools
		Preparation
		Cleaning
		Cleaving
		VI. What Causes Splice Losses? VII. The Splicing Environment
		VII. Closures
		Applications
		Types
		Environmental Protection
		Length: 32 minutes

For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com

APPENDIX B

How-to-Series:

Part #	Part #	
Video	CD-	Title
	ROM	
W-7LA	W-8LA	How To Perform Optical Loss Testing
		Optical Loss Testing focuses on the light source and power meter in performing optical loss test measurements on Singlemode and Multimode cables in Local Area Networks and Wide Area Networks. Various testing methods with their advantages and disadvantages are covered along with the importance of documentation.
		I. Characteristics of Optical Loss Testing Power Meter & Light Source II. Importance of Documentation III. Optical Loss Testing Methods Conventional Point to Point Optical Loss Test Sets Automated Test Sets Using Splitters Using Talk Sets & Splitters
		Length: 19 minutes
W-7LB	W-8LB	Understanding and Using the OTDR
		Understanding and Using the OTDR will take you step-by-step through operation and the fiber optic measurements. The OTDR is used to Acceptance Testing, Splice Monitoring and Emergency Restoration applications.
		I. Characteristics of an OTDR II. Signatures
		Reflective Events Non-reflective Events Splice Gains
		Roll Offs
		III. Using the OTDR

		Terminating the Fiber
		OTDR Setting
		Wavelength
		Index of Refraction
		Pulse Width
		Modes of Operation
		Use of Cursor
		Finding Distance to a Fiber Break
		Ghosts
		Acceptance Testing
		Splice Monitoring
		Restoration
		Length: 24 minutes
W-7LC	W-8LC	
-7LC		How To Prepare Fiber Optic Cables
		How To Prepare Fiber Optic Cables will help the technician
		gain the knowledge and skill to properly handle and prepare
		fiber optic cable to reduce damage and failure of a system,
		which may in the future bring a network down.
		which may in the future offing a licework down.
		I. Preparing Fiber Cable
		Tight Buffered Distribution
		Breakout
		Loose Tube Gel-filled
		II. Breakout and Fan-out Kits
		III. Armored Cables
		IV. Mid Cable Entry
		V. Safety Issues
		Length: 18 minutes
W-7LD	W-8LD	How To Cleave, Polish and Inspect a Fiber Optic
		Connector
		Connector
		How To Cleave, Polish and Inspect a Fiber Optic Connector
		demonstrates the efficiency of the equipment, tools and
		techniques involved in cleaving, polishing and inspecting both
		Multimode and Singlemode fiber optic connectors.
		waranode and Singlemode noer optic connectors.
		I. Multimode and Singlemode Connectors
		Prepare Fiber
		Strip Fiber

T		
		Clean Fiber
		Cleaving
		Polishing
		Testing
		II. Analysis of Termination & Testing Disciplines
		Impact on Rework Time, Cost & Materials
		Length: 29 minutes
W-7LE	W-8LE	How To Perform a Fiber Acceptance Test
		How To Perform a Fiber Acceptance Test details critical issues
		-
		as well as equipment and techniques to successfully perform an
		acceptance test on cable before it is pulled.
		I Importance of Decumentation
		I. Importance of Documentation
		II. Visual Inspection
		III. OTDR Inspection Test
		IV. Optical Continuity Test
		V. Light Source-Power Meter Technique
		Length: 16 minutes
W-7LF	W-8LF	Singlemode Fiber Optics Emergency Restoration
		Singlemode Fiber Optic Emergency Restoration describes common damage scenarios and how to quickly locate faults and restore service.
		I Examples of Typical Cable Damage in
		I. Examples of Typical Cable Damage in: Aerial Installations
		Underground Installations
		II. How To Assess a Restoration
		Initial Assessment
		Necessary Test Equipment & How to Use the
		Equipment
		Optical Power Meter
		Visual Laser Tracer
		OTDR
		III. Planned Permanent Restoration vs. Temporary
		Emergency Restoration
		Importance of Documentation
		IV. Emergency Restoration Kit Contents
		Restoration Scenario

W-7LG	W-8LG	How To Perform an Optical Loss Budget
		How To Perform an Optical Loss Budget calculates the optical power available at the output of the transmitting source, the optical power required at the receiver's detector and the attenuation of optical power between the transmitter and receiver. The optical loss budget states how the optical power available will be used for TIA/EIA standard, Wide Area Networks, and CATV networks using Singlemode fiber.
		I. System Design Process Transmission System Media Type-Multimode & Singlemode Fibers Physical Plant Examples Fiber Optic Transmit & Receive Equipment
		Types, Options & Limitations
		II. Loss Budgeting Examples (step by step demonstration)
		Local Area Network
		Attenuation & Bandwidth Examples using 50/125 and 62.5/125 fibers
		Not to Exceed Loss Budgets for Contractors Singlemode Fiber Link
		Analog CATV Link in a Hybrid Fiber-Coax Application
		Optical Amplifiers & Splitters
		III. Review of Design Options
		Wavelengths
		Fiber Structures
		Transmitters-Lasers, LEDs & VSCELs Receiver-PIN & APDs
		Physical Plant Losses
		Manufacture Options
		Length: 35 minutes
W-7LH	W-8LH	How To Cleave and Splice Optical Fibers
		How To Cleave and Splice Optical Fibers details the correct methods of preparing, cleaving, splicing and protecting optical fibers. Precision is required in optical splicing to minimize attenuation with proper alignment and to protect the fiber at the splice point.
		Overview of Mechanical Splicing and Fusion Splicing

		I. Safety Concerns
		II. Preparing the Fiber
		Removing Jackets
		Kevlar Cutting
		Coating Stripping
		III. Cleaning Issues for Fibers and Tools
		IV. Cleaving the Fiber
		Causes of Losses and Failures
		Overview of Cleaving Tools
		V. Mechanical Splice Examples
		VI. Fusion Splicing
		How the Fusion Splicer Works
		Setting up the Splicer
		Preparing & Cleaving the Fiber
		Installing Heat Shrink & Butterfly Splice
		Protectors
		Tips to Getting a High Quality Splice
		Causes of Bad Splices and How to Resolve
		Affects of Altitude, Humidity and Temperature
		Length: 26 minutes
W-7LI	W-8LI	
W-/LI	W-0L1	How to Prepare a Fiber Optic Patch Panel
W-7LJ	W-8LJ	How To Clean Fiber Ontic Connectors
J. J. J.	Jan San San San San San San San San San S	How To Clean Fiber Optic Connectors
		How to Clean a Fiber Optic Connector video reviews the
		products, applications and their proper usage. It shows the
		causes of contamination when using various cleaning techniques
		and demonstrates the different products used to clean:
		and demonstrates the different products used to clean.
		I. Fibers
		II. Connector end faces
		Alcohol based products
		Compressed air products
		Tape products
		Cloth products
		III. Cleaning sleeves and mated connector parts
		Length: 31 minutes

For more information contact us @: Phone #: 905-606-0601 Fax #: 1 866 339-1473 E-mail: chrisrhills@gmail.com